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ABSTRACT
Motivation: Clustering algorithms play an important role in the
analysis of biological networks, and can be used to uncover functional
modules and obtain hints about cellular organization. While most
available clustering algorithms work well on biological networks of
moderate size, such as the yeast protein physical interaction network,
they either fail or are too slow in practice for larger networks, such
as functional networks for higher eukaryotes. Since an increasing
number of larger biological networks are being determined, the
limitations of current clustering approaches curtail the types of
biological network analyses that can be performed.

Results: We present a fast local network clustering algorithm SPICi.
SPICi runs in time O(V log V + E) and space O(E), where V and E

are the number of vertices and edges in the network, respectively. We
evaluate SPICi’s performance on several existing protein interaction
networks of varying size, and compare SPICi to nine previous
approaches for clustering biological networks. We show that SPICi is
typically several orders of magnitude faster than previous approaches
and is the only one that can successfully cluster all test networks
within very short time. We demonstrate that SPICi has state-of-
the-art performance with respect to the quality of the clusters it
uncovers, as judged by its ability to recapitulate protein complexes
and functional modules. Finally, we demonstrate the power of our
fast network clustering algorithm by applying SPICi across hundreds
of large context-specific human networks, and identifying modules
specific for single conditions.
Availability: Source code is available under the GNU Public License
at http://compbio.cs.princeton.edu/spici
Contact: mona@cs.princeton.edu

1 INTRODUCTION
High-throughput experimental technologies, along with computa-
tional predictions, have resulted in large-scale biological networks
for numerous organisms. In recent years, much research effort has
focused on analyzing these biological networks in order to obtain
hints about cellular organization and functioning. Clustering is
perhaps the most common approach for global network analysis,
and is frequently applied to uncover functional modules and protein
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complexes, and to infer protein function (Hartwell et al., 1999;
Rives and Galitski, 2003; Spirin and Mirny, 2003; Bader et al.,
2003; Pereira-Leal et al., 2004). As a result, numerous clustering
algorithms for biological networks have been developed (e.g., Blatt
et al. (1996); Brun et al. (2003); Samanta and Liang (2003); Enright
et al. (2002); Bader et al. (2003); King et al. (2004); Palla et al.
(2005); Sharan et al. (2005); Chen and Yuan (2006); Altaf et al.
(2006); Loewenstein et al. (2008); Georgii et al. (2009); Navlakha
et al. (2009); Colak et al. (2009)).

Previous methods for clustering biological networks work well
on networks of moderate size. However, the size and number of
biological networks continue to grow. For example, by extensive
data integration, proteome-scale functional networks have been built
for hundreds of organisms across the evolutionary spectrum (Jensen
et al., 2009). Recently, by additionally considering specific
biological processes of interest, hundreds of context-specific
functional networks for human have been built (Huttenhower et al.,
2009). Moreover, in the near future, biological networks will include
numerous additional biological entities such as non-coding RNAs as
well as a wider range of interaction types.

Large networks present considerable challenges for existing
clustering approaches. Here, we develop a new efficient network
clustering algorithm SPICi (“spicy,” Speed and Performance In
Clustering). SPICi builds clusters greedily, starting from local seeds
that have high weighted degree, and adding nodes that maintain
the density of the clusters and are adjacent to a suitable fraction of
nodes within them. The intuition underlying SPICi is similar to that
of DPClus (Altaf et al., 2006). However, SPICi exploits a simpler
cluster expansion approach, uses a different seed selection criterion,
and incorporates interaction confidences. Approaches based on
enumeration have also been developed; these aim to uncover all
clusters with specific density requirements. CFinder (Palla et al.,
2005) finds clusters such that each consists of a maximal connected
component of adjacent cliques of size k where two cliques are
adjacent if they share k − 1 nodes. An alternate approach relaxes
the requirement of complete cliques and instead finds all subsets of
nodes with high density (Colak et al., 2009; Georgii et al., 2009).
While these approaches guarantee that they output all clusters with
a particular property, they are computationally intensive. In contrast,
SPICi takes a heuristic approach with respect to the clusters it
outputs but guarantees a runtime of O(V log V + E), where V and
E are the number of vertices and edges in the network.
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We demonstrate SPICi’s excellent runtime and its state-of-the-
art performance via several analyses. First, we compare SPICi to
nine previous network clustering algorithms (Loewenstein et al.,
2008; Blatt et al., 1996; Enright et al., 2002; Bader et al., 2003;
King et al., 2004; Palla et al., 2005; Sharan et al., 2005; Altaf
et al., 2006; Georgii et al., 2009) on a test set of five existing
biological networks (see Table 1). SPICi is more than 4 − 1000
times faster than the previous approaches on the networks for
which the approaches terminate within 12 hours on a standard
desktop machine. Moreover, it is the only algorithm of those
tested that is able to cluster all the networks within a reasonable
amount of time. Second, we show that even though SPICi is
much faster than previous clustering approaches, the clusters it
uncovers in biological networks recapitulate functional modules
just as well. Third, we perform a robustness analysis on synthetic
networks, as described by (Brohee et al., 2006), and show
that SPICi has very good performance in recapitulating protein
complexes, deteriorating only on extremely incomplete networks.
We also find SPICi to be robust to perturbations in dense functional
networks. Finally, we use SPICi to cluster 230 large, context-
specific human networks (Huttenhower et al., 2009) and identify
modules specific for single conditions; because of the size and
number of networks, this type of analysis was made feasible only
by utilizing our new fast clustering approach.

2 METHODS

2.1 Algorithm Framework
Preliminaries. Given a weighted network, the goal of our algorithm is
to output a set of disjoint dense subgraphs. We model the network as a
undirected graph G = (V, E) with a confidence score 0 < wu,v ≤ 1
for every edge (u, v) ∈ E. For any two vertices u and v without an edge
between them, we set wu,v = 0. Our approach utilizes several measures.
For each vertex u, we define its weighted degree, dw(u), as the sum of all
of its incident edges’ confidence values:

dw(u) =
X

v:(u,v)∈E

wu,v .

For each set of vertices S ⊂ V , we define its density as the sum of the
weights of the edges among them, divided by the total number of possible
edges (i.e., the density of a set is a measure of how close the induced sub-
graph is to a clique, and varies from 0 to 1):

density(S) =

P
u,v∈S wu,v

|S| ∗ (|S| − 1)/2
.

Finally, for each vertex u and set S ⊂ V , we define the support of u by S
as the sum of the confidences of u’s edges that are incident to vertices in S:

support(u, S) =
X

v∈S

wu,v.

Algorithm overview. We use a heuristic approach to greedily build clusters.
SPICi builds one cluster at a time, and each cluster is expanded from an
original seed pair of proteins. The unclustered node that has the highest
support for the cluster is added if the support is high enough and the density
of the cluster remains higher than a user-defined threshold; otherwise, the
cluster is output and its nodes removed from the network. SPICi thus has
two parameters: Ts, the support threshold and Td, the density threshold.
(See Figure 1 for a simplified example.)

Seed selection. To select the seed vertices, we first find the vertex u
that has the highest weighted degree in the current network. Then, we

Fig. 1. Example to illustrate the clustering process. This example network
has 10 vertices, and every edge has confidence 1 except (1,6), (1,10),
(5,6) and (7,8). Suppose the support threshold is Ts = 0.5. The highest
weighted degree vertex, vertex 1 with weighted degree 4, is taken as a
seed protein. The highest non-empty bin (0.8,1] for vertex 1 is composed
of neighboring vertices 2, 3 and 9. Of these, vertex 2 has weighted degree 3,
the largest of this bin, and it is taken as the second seed vertex. In the first
step of the density-based search, vertex 3 has the highest support, 2, from
the current cluster {1,2}. We add vertex 3 to the cluster and this cluster
now has density 1. Then, all the remaining vertices have support less than
density × cluster size × Ts = 1.5. Thus we stop expanding the cluster
and output {1,2,3} as the first cluster. After this, the next search will start
from vertex 6 and output {6,7,8} as the next cluster. Vertices 4, 5, 9 and 10
are left as singleton clusters.

divide the neighboring vertices of u into five bins based on their edge
weights: (0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8, 1]. We search
from the highest weight bin (0.8, 1] to the lowest weight bin (0, 0.2]. If
our current bin is not empty, we use the vertex v in it with the highest
weighted degree as the second seed vertex. We refer to (u, v) as the seed
edge. We utilize this heuristic approach for seed selection based on two
observations for functional networks. First, there is a positive correlation
between the weighted degree of a node and a measure of the overall
functional enrichment found among its interacting proteins (data not shown);
this suggests that high weighted degree nodes are meaningful starting points
for local module searches in functional networks. Second, two vertices are
more likely to be in the same module if the weight on the edge between
them is higher. This is why we search from the highest weight bin to the
lowest weight bin. For vertices in each bin, their edge weights to the first
seed vertex are quite similar, and by taking the one with highest weighted
degree, we obtain a larger candidate set for continuing the search.

Cluster expansion. After obtaining two seed nodes with an edge between
them, we grow each cluster in a procedure similar to that of Altaf et al.
(2006). At each step, we have a current vertex set S for the cluster, which
initially consists of the two seed vertices. We search for the vertex u with
maximum value of support(u, S) amongst all the unclustered vertices that
are adjacent to a vertex in S. If support(u, S) is smaller than a threshold,
we stop expanding this cluster and output it. If not, we put vertex u into S
and update the density value. If the density value is smaller than our density
threshold Td, we do not include u in the cluster and output S. We repeat this
procedure until all vertices in the graph are clustered.

Implementation and runtime. We implement our algorithm using two
critical data structures, described in more detail in the next paragraph. The
first data structure is a priority queue, DegreeQ, to pick the seed proteins
from which clusters are built. Initially, all proteins are organized based on
their weighted degree. Once a cluster is built and output, its proteins are
removed from DegreeQ and the weighted degrees of all proteins adjacent to
these are decreased to reflect their connectivity to other unclustered proteins.
Thus, in addition to extracting the maximum degree node, DegreeQ also
needs to support deletions and decrease key operations. The second data
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Search
Initialize DegreeQ to be V
While DegreeQ is not empty

1. Extract u from DegreeQ with largest weighted degree

2. If u has adjacent vertices in DegreeQ then

• Find from u’s adjacent vertices the second seed protein v
(see text)

• S = Expand(u, v)

else S = {u}
3. V = V − S

4. Delete all vertices in S from DegreeQ
5. For each vertex t in DegreeQ that is adjacent to a vertex in S,

decrement its weighted degree by support(t, S)

Expand(u,v)
Initialize the cluster S = {u, v}
Initialize CandidateQ to contain vertices neighboring u or v

While CandidateQ is not empty

1. Extract t from Candidate with highest support(t, S)

2. If support(t, S) ≥ Ts ∗ |S| ∗ density(S) and
density(S ∪ {t}) > Td then

• S = S + {t}
• Increase the support for vertices connected to t in

CandidateQ
• For all unclustered vertices adjacent to t, insert them into

CandidateQ if not already present

else break from loop

return S

Fig. 2. Pseudocode of the algorithm. The Search procedure iteratively finds
seed proteins and calls Expand to build a cluster from them.

structure, CandidateQ, is used to expand clusters. It is also a priority queue,
where each element is a node u adjacent to one of the nodes in the cluster
S being built, and is prioritized based on support(u, S). In addition to
extracting the max element, CandidateQ needs to support insertions, as
neighbors of nodes added to S are added to it, and increase key operations,
since as S grows, the supports of all vertices with respect to S increase.
We describe SPICi with these data structures in the pseudocode given in
Figure 2.

The specific data structures we use are now described. For CandidateQ,
we need efficient Insert, ExtractMax, and IncreaseKey operations. We
use a Fibonacci heap (Tarjan et al., 1987), as amortized analysis gives a
time complexity of O(1) for Insert and IncreaseKey and of O(log n) for
ExtractMax, where n is the number of possible items in the heap. We now
count the overall time cost for all Expand operations. There are at most
O(V ) ExtractMax operations, so the overall cost for them is O(V log V ).
For IncreaseKey, each operation is associated with an edge connected to
that vertex, so the overall cost for these operations is O(E). For Insert, the

Fig. 3. Integer heap data structure corresponding to the example in Figure 1.
Vertices are put into the data structure based on their weighted degree. For
example, Vertex 6 has weighted degree 3.1. It is rounded to 3 in slot 3.
Vertex 5 has weighted degree 0.5. It is rounded to 1 in slot 1. Each slot is
organized as a doubly-linked list, so we can delete and insert an element in
O(1) time.

overall cost is O(E) since each insertion is associated with an edge from
S. So, the overall time cost for all Expand operations is O(V log V + E).
For the Fibonacci heap, the space complexity is O(n), so we get a space
complexity of O(V ).

For DegreeQ, we need to support ExtractMax, Delete, and
DecreaseKey. As an optimization, we round off each vertex’s weighted
degree to an integer, and utilize an extremely fast data structure, which we
refer to as an Integer heap, with time complexity of O(1) for Delete and
DecreaseKey, and an amortized time complexity of O(1) for ExtractMax.
More specifically, since every element in the heap is an integer, we use an
array as its backbone, and at every slot in the array, we use a doubly-linked
list for all vertices with weighted degree rounded to that slot index. Since
each edge has confidence ≤ 1, the number of slots is O(V ), and the total
space necessary to handle all vertices is O(V ). (See Figure 3 for a schematic
of our Integer heap data structure.) For insertion and deletion, we require the
procedure call to provide the pointer to the doubly-linked list node, and so
these two operations can be performed in O(1) time. For DecreaseKey,
we first disconnect the node and then reconnect it to a new slot with O(1)
cost. Note that we store the initial weights per edge, and then round each
time we perform DecreaseKey. For ExtractMax, we just need to pop out a
value at the top slot of our array. If any array slot becomes empty, we need
to search down the array until we reach a new non-empty slot. The total
number of all down-searches is V − 1, which is the maximum length of
the array. Thus, if there are a total of V operations, the amortized time for
each operation is O(1). The time complexity of procedure Search without
considering the time spent for Expand is O(V + E) = O(E), as there are
at most V ExtractMax and Delete operations, E DecreaseKey operations,
and each edge is considered at most once when finding the second seed
vertex. Thus considering Search and Expand together, SPICi has time
complexity O(V log V + E) and space complexity O(E).

2.2 Network Datasets
We concentrate our initial analysis on two networks for yeast and three
networks for human (see Table 1). The two Biogrid (Breitkreutz et al.,
2008) networks consist of experimentally determined physical and genetic
interactions. The two STRING (Jensen et al., 2009) networks and the
human Bayesian network (Huttenhower et al., 2009) consist of functional
associations between proteins that are derived from data integration. For
Biogrid, we extract all non-redundant interaction pairs, including all protein
physical and genetic interactions. For STRING (Jensen et al., 2009), we
use all weighted interactions. For the Bayesian human network, we use
the global network from Huttenhower et al. (2009); this network is not
tuned towards any specific biological process. In subsequent analysis, we
also use the 229 context-specific human networks from Huttenhower et al.
(2009); here each context is a biological process from the Gene Ontology
(GO) (Ashburner et al., 2000), and the training set is altered according
to the specific biological process context so that the network will better
represent that specific context. None of the networks are further processed.
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Table 1. Test set of biological networks. Five test networks are
considered, two for yeast and three for human (see text). For each
network, the number of vertices and edges are given.

Biogrid STRING Biogrid STRING Bayesian
Yeast Yeast Human Human Human

Vertices 5361 6371 7498 18670 24433
Edges 85866 311765 23730 1432538 298473526

For functional module discovery and/or protein function prediction, it may
be beneficial in practice to remove high-degree nodes and/or otherwise prune
the networks; since different processing may be necessary for different
networks, and our primary goal is to test SPICi’s ability to cluster large
networks, such variations are not explored here.

2.3 Computational experiments
All experiments are run on an Intel 2GHz dual-core computer with
2GB memory. We compare our approach to SPC (Blatt et al., 1996),
MCL (Enright et al., 2002), MCODE (Bader et al., 2003), RNSC (King
et al., 2004), Cfinder (Palla et al., 2005), NetworkBLAST (Sharan et al.,
2005), DPClus (Altaf et al., 2006), MCUPGMA (Loewenstein et al., 2008)
and DME (Georgii et al., 2009). We briefly highlight the main features of
these algorithms. SPC associates a “spin” with each node, and spin-spin
correlations are used to partition the network. MCL is a global clustering
approach based on modified random walks on networks. MCODE is
one of the first approaches specifically geared for clustering interactomes,
and greedily grows clusters from a seed node. CFinder finds a set of k-
clique percolation clusters, each of which consists of a maximal connected
component of adjacent cliques of size k where two cliques are adjacent if
they share k − 1 nodes. NetworkBLAST, designed for comparing multiple
protein networks but applicable for clustering a single protein network,
greedily builds small “dense” clusters. DPClus is a greedy approach that
grows clusters based on adding nodes that are well connected to other
nodes in the cluster and that maintain cluster density. MCUPGMA is a
memory-efficient average-link hierachical clustering algorithm. DME finds
all clusters that satisfy a user-defined minimum density threshold.

For MCL, we set the inflation factor to 1.8, as this has been found to
yield the best performance in clustering biological networks (Brohee et al.,
2006). For RNSC, we use the parameters given in the sample README file
that comes with the software (-e3 -n2 -N100 -D40 -d10 -c300 -t15 -T2).
For SPICi, we set both Ts and Td to 0.5. We use the default parameters
for the other approaches. For MCUPGMA, the distance between two nodes
u and v is set to 1 − wu,v . By default, MCUPGMA allocates a fixed
amount of memory corresponding to a pre-specified limit on the number
of edges that are allowed into memory in each clustering iteration. Without
this limit, MCUPGMA runs out of memory on the large Bayesian human
networks. While we carefully experimented with changing this memory
limit for the human functional networks, the running time of MCUPGMA
on these networks still exceeded our time limits and thus for simplicity, we
ran the program with its default parameter. We note also that MCUPGMA
outputs a hierarchical clustering dendogram without a split into clusters.
We obtain clusters using an inconsistency coefficient (Jain et al., 1988);
this is a standard procedure in MATLAB’s statistics toolbox for processing
hierarchical clustering dendograms to obtain clusters. The inconsistency
coefficient for each merge of the the dendogram is computed by taking its
height in the dendogram and subtracting the average height of all merges
considered, and dividing this by the standard deviation of these the merges.
The higher the value of this coefficient, the more a merge would connect
dissimilar nodes. As in MATLAB’s default parameters, we consider only the
current merge, and the merges one level below. We use a value of 0.8 to cut
the tree, as these values range from 0 to 1.2 in the considered dendograms

and there are only two peaks in the distribution (data not shown), one
corresponding to merges with inconsistency value < 0.1, (i.e., the initial
merges) and the other corresponding to merges in the range of 0.7 and 0.8.

All reported runtimes are wall clock times for running the clustering
portion of the programs only. We do not report CPU times, as some of the
clustering algorithms are designed to be run within a user interface, making
strict system timing calls difficult.

2.4 GO analysis
The quality of clusters obtained from all algorithms are evaluated using the
framework described in Song et al. (2009). We use GO to build our reference
set of functional modules, with all IEA (Inferred from electronic annotation)
terms removed, as suggested in Rhee et al. (2008). For each organism, only
GO terms that annotate at most 1000 proteins are considered. For a given
GO annotation A, we define the “functional module set” GA to consist of
all genes annotated with A. Song et al. (2009) utilize the following three
measures to measure the overlap between computationally derived cluster
and the GO functional modules:

1. Jaccard: For each cluster C, its Jaccard value with each GO derived
functional module group GA is computed as |C∩GA|

|C∪GA| . The Jaccard
measure for cluster C is the maximum Jaccard value over all considered
GO terms A.

2. PR (Precision-Recall): For each cluster C, its PR value with a GO
derived functional module GA is computed as |C∩GA|

|GA|
|C∩GA|
|C| . The

PR measure for C is the maximum PR value over all considered GO
terms A.

3. Semantic Density: For each cluster, the average semantic similarity
between each pair of annotated proteins within it is computed. In
particular, for proteins p1 and p2 with annotations A(p1) and A(p2)
respectively, the semantic similarity of their GO annotations is defined
as:

2 ∗mina∈A(p1)
T

A(p2) log(p(a))

mina∈A(p1) log(p(a)) + mina∈A(p2) log(p(a))
,

where p(a) is the fraction of annotated proteins with annotation a in the
organism (Lord et al., 2003; Song et al., 2009). Note that more specific
annotations a have smaller values of p(a), and log(p(a)) ≤ 0. For our
semantic density calculations here, all GO terms are considered, even
those annotating more than 1000 proteins.

Each of these three measures varies from 0 to 1, with higher values
indicating better agreement of the uncovered clusters with functional
modules corresponding to GO. We consider the GO biological process (BP)
and cellular component (CC) ontologies separately. For each cluster, we
calculate these three measures separately for both ontologies, and these
measures are assigned to all proteins within the cluster. Genes in singleton
clusters are penalized by having Jaccard, PR and semantic density values of
0. Finally, for each of the six measures (three BP and three CC), we compute
its average value over all proteins in the network; this is equivalent in the case
of non-overlapping clusters to taking a weighted average over all clusters,
where each cluster is weighted by its size. For more details, please see Song
et al. (2009). Some of the tested approaches output overlapping clusters. In
this case, if a protein is found in more than one cluster, then each of its six
measures is obtained by averaging over the values obtained from each of its
clusters.

2.5 Robustness analysis
In order to characterize SPICi’s robustness to changes in the network,
we use the procedure of Brohee et al. (2006) to characterize how well
MIPS complexes are recapitulated from synthetic test network data. In
particular, networks are initially created for each of the 104 S. cerevisiae
MIPS (Mewes et al., 2004) complexes that are not determined from high-
throughput experiments. A node is included in the network for each protein
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Table 2. Running time and memory usage of clustering approaches.

Running Biogrid Biogrid STRING STRING Bayesian
Time (secs) Yeast Human Yeast Human Human

SPICi 1 1 2 7 1111
MCUPGMA 5 4 9 33
MCL 336 114 645 4926
NetworkBLAST 1904 427 7848
SPC 183 215 219
MCODE 101 49 7848
DPClus 1602 2113
RNSC 172 17 1325 23448
CFinder 25
DME

Memory Biogrid Biogrid STRING STRING Bayesian
(MBs) Yeast Human Yeast Human Human

SPICi 1.2 1.5 15.1 90.5 1143.0
MCUPGMA 259.1 259.1 259.1 259.1
MCL 73.3 24.9 111.7 357.0
NetworkBLAST 61.9 60.5 72.8
SPC 220.5 430.3 311.0
MCODE 375.6 306.1 606.9
DPClus 140.2 202.1
RNSC 25.9 9.8 82.3 349.4
CFinder 23.0
DME

Running time and peak memory usage of each algorithm on each network. For running
time, clock times, rounded to the second, are reported. Peak memory usage is given in
megabytes. Note that MCUPGMA’s memory usage is pre-allocated with a default limit
and is thus constant for these networks (see Methods). Blank entries in the table indicate
that the approach did not successfully cluster the network within 12 hours.

in one of these complexes, and an edge is included in the network between
any two proteins in the same complex. This network with |E| edges is then
modified as follows. For an edge addition rate pa and an edge deletion
rate pd, first pa · |E| edges are added to the network, and then pd · |E|
edges are chosen uniformly at random for deletion. Brohee et al. (2006)
utilize two measures, Accuracy and Separation, for evaluating clusterings.
Accuracy measures how well the clustering recovers the gold standard MIPS
complexes. Separation measures how specifically the clustering can be
mapped to the MIPS gold standard set without cross-complex contamination.
(See Brohee et al. (2006) for precise definitions of these two measures.)

3 RESULTS AND DISCUSSION
3.1 Speed and memory analysis
We run SPICi and nine previous clustering approaches on our five
network data sets. Table 2 gives the runtime and memory usage of
each approach on each of the data sets. SPICi is the only approach
that can cluster each of the five networks within twelve hours;
indeed it takes less than 10 seconds for four of the five networks and
takes less than 20 minutes on the largest dense functional network.
Even on networks that can be clustered by the other approaches,
SPICi obtains substantial speed-ups. This decrease in runtime is
accompanied by a decrease in memory usage as well. For the human
Bayesian functional network, SPICi uses 1.11 GB of memory,
which corresponds to the size of the network itself.

Table 3. GO analysis of clusters output by SPICi , MCUPGMA and MCL.

Biological Process Cellular Component
Network Algorithm sDensity Jaccard PR sDensity Jaccard PR

Biogrid SPICi 0.368 0.214 0.183 0.379 0.167 0.141
Yeast MCUPGMA 0.414 0.200 0.160 0.444 0.147 0.115

MCL 0.284 0.208 0.156 0.324 0.171 0.125

Biogrid SPICi 0.254 0.183 0.159 0.271 0.097 0.078
Human MCUPGMA 0.319 0.179 0.150 0.348 0.096 0.074

MCL 0.348 0.177 0.141 0.388 0.120 0.091

STRING SPICi 0.466 0.264 0.232 0.450 0.220 0.199
Yeast MCUPGMA 0.579 0.235 0.206 0.584 0.187 0.172

MCL 0.227 0.205 0.194 0.261 0.167 0.143

STRING SPICi 0.316 0.210 0.180 0.331 0.123 0.103
Human MCUPGMA 0.338 0.200 0.178 0.344 0.088 0.074

MCL 0.247 0.197 0.159 0.297 0.163 0.125

3.2 GO analysis
We use the procedure from Song et al. (2009) to access the
overall quality of the clusters we find. Three approaches (SPICi,
MCUPGMA, MCL) can cluster four of the networks, and we
focus on these methods and networks in our analysis in the
main body of the paper. We find that neither SPICi, MCUPGMA
nor MCL clearly dominates the other approaches (Table 3 and
Supplementary Table 1). We observe that these three approaches
have complimentary strengths when considering clusters of different
sizes on the functional networks (see Supplementary Figures 1).
For clusters with at most five proteins, MCUPGMA has the highest
average quality measures. On the other hand, SPICi’s clusters
of intermediate size (from 6 to 150 proteins) generally have
higher quality measures. For clusters with more than 150 proteins,
SPICi and MCL perform best.

Many of the remaining seven algorithms can cluster the smaller
sized networks well, and in some cases may outperform the three
approaches here; however, their runtime or memory requirements
limit their applicability. We note that while it is possible to reduce
the large functional networks into smaller ones by only keeping
edges with a weight above a certain threshold, we find that, for
all approaches we tested, by keeping all interactions, we find
additional “unique” functionally enriched clusters as well as an
increase in the number of proteins in functionally enriched clusters.
(See supplementary material.)

3.3 Robustness analysis
We first apply the procedure of Brohee et al. (2006) to compare the
robustness of SPICi against that of MCL and MCUPGMA. We build
10 synthetic test networks edges for each pairwise combination of
10 addition rates and 10 deletion rates. The averaged Separation
and Accuracy measures (Brohee et al., 2006) for each addition
and deletion rate are shown in Figure 4 (see also Supplementary
Table 2). We find that SPICi has better overall performance than
MCUPGMA (Figure 4b). When comparing MCL and SPICi, it
is clear that neither method dominates the other at all noisy edge
insertion and deletion rates. For low interaction insertion and
deletion rates, the methods perform comparably. For high deletion
rates, MCL generally outperforms SPICi. For high interaction
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addition rates and low interaction deletion rates, SPICi has better
overall performance than MCL. These results suggest that SPICi is
less sensitive to noisy edge addition than MCL, and is perhaps
better suited for dense functional networks such as the STRING
networks. Consistent with this, we find that SPICi is quite robust
to perturbations of confidence values in both the STRING human
and yeast networks, with a steady but relatively modest decrease
in average Jaccard, PR and semantic density values as increasing
amounts of noise are added (see Supplementary Table 3).

3.4 Clustering of numerous context-specific human
functional networks

While the Bayesian human network from Huttenhower et al.
(2009), obtained by global data integration of multiple sources
of evidence linking proteins, proves to be challenging for all
the previous network clustering approaches, the authors actually
created 229 additional networks of similar size. Each of these
networks corresponds to one of 229 specific biological processes.
Here, we show the type of analysis SPICi enables by its fast
clustering approach—analysis that would not be possible by the
previous approaches. In particular, we utilize SPICi to uncover
context-specific modules from these context-specific networks.

We use SPICi to cluster all 229+1 human functional networks.
Altogether, we get 63,973 clusters of size greater than five
and density greater than 0.5. We select context-specific modules
utilizing the following criteria. For each candidate cluster, we
require that:

1. No uncovered clusters from any other context-specific network
can overlap more than half of its proteins.

2. The density of the cluster’s set of proteins is less than 0.25 in
the global network.

3. Fewer than 10 other context specific networks contain this set
of proteins with a density greater than 0.25.

By applying these three criteria, we attempt to uncover modules
that are unique to a certain context. In total, 2088 clusters passed
these criteria. As an example, we look at one such cluster, found
in the response to inorganic substance network (Figure 5). There
are 10 proteins in this cluster. This cluster has very limited overlap
(at most 2 proteins) with clusters found in the other networks.
Moreover, all other networks contain this set of proteins with a
density smaller than 0.25. The cluster is found to be enriched via the
hypergeometric distribution with the annotations response to metal
ion (p-value = 1.39E-015, seven proteins annotated) and transport
(p-value = 4.20E-006, seven proteins annotated). An interesting case
is the DRG1 protein (also known as Developmentally-Regulated
GTP-binding protein 1). It is annotated with GO terms such as
GTP binding and transcription factor binding, but has no known
annotations related with response to metal ion or transport. This
uncovered cluster reveals DRG1’s potential role in metal ion
response and transport.

4 CONCLUSIONS
We have developed a fast, memory-efficient clustering algorithm,
SPICi. SPICi is significantly faster than previous clustering

Fig. 4. Robustness analysis comparing SPICi, MCL and MCUPGMA in
their ability to recapitulate MIPS complexes from synthetic networks. Ten
edge deletion and insertion edges are considered (from 0.0 to 0.9 in
increments of 0.1). The x-axis gives the random edge deletion rate, and the
y-axis gives the noisy edge addition rate. Each cell corresponds to a single
insertion and deletion rate combination. In (a), the lower triangle within each
cell gives the average value of log2(SPICi Accuracy/MCL Accuracy)
over the 10 networks generated for the corresponding insertion and
deletion rate combination. The upper triangle within each cell gives the
analogous log2(SPICi Separation/MCL Separation) values. Values
greater than 0, shown in red, indicate that SPICi is better. Similarly, values
smaller than 0, shown in green, indicate that MCL is better. In (b), the same
data is shown, except SPICi is compared to MCUPGMA.

algorithms for biological networks, and importantly, enables us to
cluster larger networks than previously possible. Moreover, we have
demonstrated via several analyses that the clusters uncovered by
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DRG1

TNNT2

ASNA1

MT1X

AQP9

SLC25A13

SLC25A12

ATP7B

ATP7A

MYT1

Fig. 5. A context-specific module found in the response to inorganic
substance network network of Huttenhower et al. (2009). We only show
interactions with weights greater than 0.5. Grey colored nodes correspond to
proteins with the GO annotation Transport. Double peripheral ellipse nodes
correspond to proteins with GO annotation response to metal ion. The DRG1
protein, shown in a box node, is discussed further in the text.

SPICi are of comparable quality to those found by other state-of-
the-art algorithms. In our experience, SPICi is especially well-suited
for dense networks, such as functional networks. Within sparser
networks, we have found that SPICi also readily identifies dense
regions, but for reasonable parameter settings will conservatively
leave many proteins unclustered.

We have shown that SPICi can be effectively run on hundreds
of large human context-specific networks in order to find context-
specific modules. In the future, we foresee using SPICi to perform
other types of comparative interactomics. For example, protein
interaction networks for a single organism can be modified to
incorporate information about each protein’s tissue-specific or
condition-specific expression, and comparing clusterings across
these networks can help identify modules that are either conserved
across numerous conditions or specific to certain conditions. Given
the large number of expression datasets, this leads to the possibility
of hundreds or even thousands of varying networks across a
single organism. SPICi’s runtime and memory efficiency enables
these new types of analyses, and should be particularly useful as
biological networks continue to grow in size and number.
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